掌握此电路的核心就是要弄懂自举电路是如何工作的下面简单介绍一下自举电路:
自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,利用电容不能突变的特性使电容放电电压和电源电压叠加,从而使电压升高。
如下图所示当开关S1接3时MOS管导通此时C1负极与地相接电源通过D1、MOS管对电容进行充电当电路稳定之后电容正端电压对地为12V,负端对地电压为0V
当如下图所示MOS管关断时,由于电容电压不能突变,电容和12V电源相接C1负端相对地为12V ,由于二极管反向截止,正端的对地电压为电容充电电压和电源电压之和24V ,电容两端的电压为12V。
了解了自举电路之后我们再来分析这个全桥电路就简单多了
C1是自举电容,它是在Q2导通(此时Q1必定截止)期间(看作C1下端接地)由12V经D1完成充电的,等到Q2截止时C1下端就与地断开了,此时C1充有幅值等于12V的电压,就会上举使C1正端电位大于12V,因而使D1反偏而截止,这样C1上的电压充当电源就给Q1栅极提供了正向导通的偏压,使Q1导通。 C1充电的条件就是下管Q2导通如果无此条件(例如占空比变化到Q2始终处于截止状态)C1就自举不了S1就无法导通,这时就要另用独立电源来代替自举电容。
在编程控制时特别要注意的是Q1、Q4同时,Q2、Q4同时导通且不能交叉同事导通否则会烧坏MOS管,在功率大时也要注意MOS管要加散热片。
IRF2104的控制
由芯片手册提供的控制图(如下图所示)可知:当SD=1时,即允许使能IR2104芯片时, Ho的波形与IN波形相同,Lo波形与IN波形则是反相的关系。Ho是高电平时,Lo就是低电平,反之Ho是低电平时,Lo就是高电平;这样使能芯片后我们控制输入端的PWM波形的占空比就可以对负载进行相应的控制了。